International Rectifier

AUTOMOTIVE MOSFET

IRFR2607ZPbFIRFU2607ZPbF

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

HEXFET® Power MOSFET

 $V_{DSS} = 75V$ $R_{DS(on)} = 22m\Omega$ $I_D = 42A$

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	45	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	32	Α
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	42	
I _{DM}	Pulsed Drain Current ①	180	
P _D @T _C = 25°C	Power Dissipation	110	W
	Linear Derating Factor	0.72	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS (Thermally limited)}	Single Pulse Avalanche Energy®	96	mJ
E _{AS} (Tested)	Single Pulse Avalanche Energy Tested Value ®	96	
I _{AR}	Avalanche Current ①	See Fig.12a, 12b, 15, 16	Α
E _{AR}	Repetitive Avalanche Energy ⑤		mJ
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting Torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ®		1.38	
$R_{\theta JA}$	Junction-to-Ambient (PCB mount) ⑦®		40	°C/W
$R_{\theta JA}$	Junction-to-Ambient ®		110	

IRFR/U2607ZPbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	75			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.074		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		17.6	22	mΩ	$V_{GS} = 10V, I_D = 30A$ ③
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	٧	$V_{DS} = V_{GS}$, $I_D = 50\mu A$
gfs	Forward Transconductance	36			S	$V_{DS} = 25V, I_{D} = 30A$
I _{DSS}	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 75V, V_{GS} = 0V$
				250		$V_{DS} = 75V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-200		$V_{GS} = -20V$
Q_g	Total Gate Charge		34	51		I _D = 30A
Q_{gs}	Gate-to-Source Charge		8.9		nC	$V_{DS} = 60V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		14			V _{GS} = 10V ③
t _{d(on)}	Turn-On Delay Time		14			$V_{DD} = 38V$
t _r	Rise Time		59			$I_D = 30A$
t _{d(off)}	Turn-Off Delay Time		39		ns	$R_G = 15 \Omega$
t _f	Fall Time		28			V _{GS} = 10V ③
L_D	Internal Drain Inductance		4.5			Between lead,
					nΗ	6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package
						and center of die contact
C _{iss}	Input Capacitance		1440			V _{GS} = 0V
C _{oss}	Output Capacitance		190			V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		110		pF	f = 1.0MHz
C _{oss}	Output Capacitance		720			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		130			$V_{GS} = 0V, V_{DS} = 60V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		230			V _{GS} = 0V, V _{DS} = 0V to 60V ④

Source-Drain Ratings and Characteristics

Course Brain Hadings and Characteriotics							
	Parameter	Min.	Тур.	Max.	Units	Conditions	
I _S	Continuous Source Current			45		MOSFET symbol	
	(Body Diode)				Α	showing the	
I _{SM}	Pulsed Source Current			180		integral reverse	
	(Body Diode) ①					p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 30A$, $V_{GS} = 0V$ ③	
t _{rr}	Reverse Recovery Time		30	45	ns	$T_J = 25^{\circ}C, I_F = 30A, V_{DD} = 38V$	
Q _{rr}	Reverse Recovery Charge		28	42	nC	di/dt = 100A/µs ③	
t _{on}	Forward Turn-On Time	Intrinsio	turn-or	time is	negligib	le (turn-on is dominated by LS+LD)	

IRFR/U2607ZPbF

D-Pak (TO-252AA) Package Outline

D-Pak (TO-252AA) Part Marking Information

International IOR Rectifier

IRFR/U2607ZPbF

D-Pak (TO-252AA) Tape & Reel Information

Dimensions are shown in millimeters

- NOTES:

 1. CONTROLLING DIMENSION: MILLIMETER.

 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).

 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:
1. OUTLINE CONFORMS TO EIA-481.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax} , starting $T_{J} = 25$ °C, L = 0.21mH ⑤ $R_G = 25\Omega$, $I_{AS} = 30A$, $V_{GS} = 10V$. Part not recommended for use above this value.
- ③ Pulse width \leq 1.0ms; duty cycle \leq 2%.
- 4 Coss eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

16.3 (.641) 15.7 (.619)

FEED DIRECTION

- Limited by T_{Jmax} , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- This value determined from sample failure population. 100% tested to this value in production.
- When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994
- R_θ is measured at T_J approximately 90°C

Data and specifications subject to change without notice. This product has been designed for the Automotive [Q101] market. Qualification Standards can be found on IR's Web site.

